Scroll Top

Data Science

Duration: 4 Months | Level: Beginner to Advanced | Mode: Online/Offline

Week 1: Python Programming Fundamentals

  • Day 1: Introduction to Data Science & Course Overview
  • Day 2: Python Basics – Variables, Data Types, Operators
  • Day 3: Control Structures – Conditionals, Loops, Functions
  • Day 4: Python Data Structures – Lists, Dictionaries, Sets, Tuples
  • Day 5: File Handling & Exception Management
  • Day 6: Object-Oriented Programming in Python
  • Day 7: Python Libraries Overview – NumPy, Pandas, Matplotlib

Week 2: Data Manipulation with Python

  • Day 8: NumPy Arrays & Mathematical Operations
  • Day 9: Pandas Fundamentals – Series, DataFrames, Index Objects
  • Day 10: Data Cleaning & Preprocessing with Pandas
  • Day 11: Data Transformation & Reshaping
  • Day 12: Handling Missing Data & Outliers
  • Day 13: Data Aggregation & Grouping Operations
  • Day 14: Time Series Data Analysis with Pandas

Week 3: Data Visualization

  • Day 15: Visualization Principles & Best Practices
  • Day 16: Matplotlib Fundamentals
  • Day 17: Seaborn for Statistical Visualizations
  • Day 18: Interactive Visualizations with Plotly
  • Day 19: Dashboarding Tools – Tableau, Power BI Introduction
  • Day 20: Geographic Data Visualization
  • Day 21: Storytelling with Data – Creating Effective Visual Narratives

Week 4: Descriptive Statistics & Probability

  • Day 22: Measures of Central Tendency & Dispersion
  • Day 23: Probability Theory Fundamentals
  • Day 24: Probability Distributions – Normal, Binomial, Poisson
  • Day 25: Random Variables & Expected Values
  • Day 26: Covariance, Correlation & Dependence
  • Day 27: Statistical Sampling Methods
  • Day 28: Exploratory Data Analysis (EDA) Techniques

Week 5: Inferential Statistics

  • Day 29: Confidence Intervals & Margin of Error
  • Day 30: Hypothesis Testing – Z-tests, T-tests
  • Day 31: ANOVA & Chi-Square Tests
  • Day 32: Non-parametric Statistical Tests
  • Day 33: Bayesian Statistics Introduction
  • Day 34: A/B Testing for Business Decisions
  • Day 35: Statistical Fallacies & Pitfalls

Week 6: Mathematics for Machine Learning

  • Day 36: Linear Algebra Fundamentals – Vectors, Matrices
  • Day 37: Matrix Operations & Transformations
  • Day 38: Eigenvalues & Eigenvectors
  • Day 39: Calculus Essentials – Derivatives, Gradients
  • Day 40: Multivariable Calculus & Partial Derivatives
  • Day 41: Optimization Algorithms & Techniques
  • Day 42: Information Theory & Entropy

Week 7: Supervised Learning – Regression

  • Day 43: Introduction to Machine Learning & Scikit-Learn
  • Day 44: Linear Regression – Theory & Implementation
  • Day 45: Polynomial Regression & Regularization Techniques
  • Day 46: Decision Trees for Regression
  • Day 47: Ensemble Methods – Random Forests for Regression
  • Day 48: Support Vector Regression
  • Day 49: Model Evaluation Metrics for Regression

Week 8: Supervised Learning – Classification

  • Day 50: Logistic Regression – Theory & Implementation
  • Day 51: Decision Trees for Classification
  • Day 52: Ensemble Methods – Random Forests, Gradient Boosting
  • Day 53: Support Vector Machines for Classification
  • Day 54: Naive Bayes Classifiers
  • Day 55: Multi-class Classification Strategies
  • Day 56: Imbalanced Dataset Handling Techniques

Week 9: Unsupervised Learning & Model Evaluation

  • Day 57: Introduction to Unsupervised Learning
  • Day 58: K-means Clustering
  • Day 59: Hierarchical Clustering
  • Day 60: DBSCAN & Density-based Clustering
  • Day 61: Principal Component Analysis (PCA) for Dimensionality Reduction
  • Day 62: Model Evaluation Metrics for Classification & Clustering
  • Day 63: Cross-Validation Techniques

Week 10: Introduction to Deep Learning

  • Day 64: Introduction to Neural Networks & Deep Learning
  • Day 65: Perceptrons & Artificial Neurons
  • Day 66: Feedforward Neural Networks
  • Day 67: Activation Functions – ReLU, Sigmoid, Tanh
  • Day 68: Backpropagation & Gradient Descent
  • Day 69: Overfitting & Regularization Techniques
  • Day 70: Model Tuning & Hyperparameter Optimization

Week 11: Convolutional Neural Networks (CNNs)

  • Day 71: Introduction to CNNs & Applications
  • Day 72: Convolution Layers & Filters
  • Day 73: Pooling Layers & Flattening
  • Day 74: CNN Architecture – LeNet, AlexNet, VGG
  • Day 75: Transfer Learning with Pre-trained Models
  • Day 76: Fine-tuning CNNs for Image Classification
  • Day 77: Evaluation of CNN Models

Week 12: Recurrent Neural Networks (RNNs) & Final Project

  • Day 78: Introduction to RNNs & Time Series Data
  • Day 79: Long Short-Term Memory (LSTM) Networks
  • Day 80: Gated Recurrent Units (GRUs)
  • Day 81: RNNs for Natural Language Processing (NLP)
  • Day 82: Final Project Planning & Architecture
  • Day 83: Final Project Development – Model Implementation
  • Day 84: Final Project Evaluation & Presentation

Additional Resources & Support

  • Weekly Code Reviews & Pair Programming Sessions
  • Industry Expert Guest Lectures
  • Mock Technical Interviews
  • Job Placement Assistance
  • Lifetime Access to Course Materials & Updates
  • Dedicated Slack/Discord Community for Networking