Scroll Top

Data Analytics

Duration: 3 Months | Level: Beginner to Advanced | Mode: Online/Offline

Week 1: Introduction to Data Analytics

  • Day 1: Data Analytics Overview & Career Paths
  • Day 2: Types of Analytics – Descriptive, Diagnostic, Predictive & Prescriptive
  • Day 3: Data Collection Methods & Sources
  • Day 4: Data Types & Measurement Scales
  • Day 5: Data Quality & Preparation Fundamentals
  • Day 6: Statistical Thinking for Data Analysis
  • Day 7: Business Intelligence Concepts

Week 2: Excel for Data Analysis

  • Day 8: Excel Fundamentals for Data Analysis
  • Day 9: Advanced Functions & Formulas (VLOOKUP, INDEX-MATCH)
  • Day 10: Pivot Tables & Data Summarization
  • Day 11: Data Visualization in Excel – Charts & Dashboards
  • Day 12: What-If Analysis & Scenario Manager
  • Day 13: Excel Power Query for Data Transformation
  • Day 14: Excel Power Pivot & Data Modeling

Week 3: SQL for Data Analysis

  • Day 15: Relational Database Concepts
  • Day 16: SQL Fundamentals – SELECT, WHERE, ORDER BY
  • Day 17: Aggregations & GROUP BY Operations
  • Day 18: JOINS & Relationships Between Tables
  • Day 19: Subqueries & Common Table Expressions (CTEs)
  • Day 20: Window Functions & Advanced SQL
  • Day 21: SQL for Data Manipulation & Transformation

Week 4: Python Fundamentals

  • Day 22: Python Basics – Variables, Data Types, Operators
  • Day 23: Control Structures – Conditionals, Loops
  • Day 24: Functions, Modules & Packages
  • Day 25: Python Data Structures – Lists, Dictionaries, Sets
  • Day 26: File Handling & Data Import/Export
  • Day 27: Python for Data Cleaning
  • Day 28: Error Handling & Debugging in Python

Week 5: Data Analysis with Pandas

  • Day 29: Introduction to Pandas – Series & DataFrames
  • Day 30: Data Indexing, Selection & Filtering
  • Day 31: Data Cleaning & Preprocessing with Pandas
  • Day 32: Data Transformation & Feature Engineering
  • Day 33: Data Aggregation & Group Operations
  • Day 34: Merging, Joining & Concatenating DataFrames
  • Day 35: Time Series Analysis with Pandas

Week 6: Data Visualization with Python

  • Day 36: Data Visualization Principles & Best Practices
  • Day 37: Matplotlib Fundamentals
  • Day 38: Seaborn for Statistical Visualizations
  • Day 39: Interactive Visualizations with Plotly
  • Day 40: Geographic Visualizations & Maps
  • Day 41: Dashboard Creation with Dash
  • Day 42: Storytelling with Data Visualizations

Week 7: Tableau

  • Day 43: Tableau Desktop Interface & Data Connections
  • Day 44: Creating Basic Visualizations in Tableau
  • Day 45: Calculated Fields & Table Calculations
  • Day 46: Interactive Dashboards & Stories
  • Day 47: Mapping & Geospatial Analysis
  • Day 48: Advanced Visualizations & Techniques
  • Day 49: Tableau Server & Sharing Reports

Week 8: Power BI

  • Day 50: Power BI Desktop Interface & Data Import
  • Day 51: Power Query for Data Transformation
  • Day 52: Data Modeling & Relationships in Power BI
  • Day 53: DAX Fundamentals – Measures & Calculated Columns
  • Day 54: Creating Power BI Reports & Visualizations
  • Day 55: Power BI Service & Sharing Content
  • Day 56: Power BI Administration & Governance

Week 9: Google Data Studio & Advanced BI

  • Day 57: Introduction to Google Data Studio
  • Day 58: Data Sources & Connections in Data Studio
  • Day 59: Creating Reports & Dashboards
  • Day 60: Calculated Fields & Data Blending
  • Day 61: Comparing BI Tools – Strengths & Use Cases
  • Day 62: BI Architecture & Implementation Strategies
  • Day 63: Data Governance & Security in BI

Week 10: Statistical Analysis for Business

  • Day 64: Descriptive Statistics & Exploratory Data Analysis
  • Day 65: Probability Distributions & Sampling
  • Day 66: Hypothesis Testing & A/B Testing
  • Day 67: Correlation & Regression Analysis
  • Day 68: Time Series Forecasting Methods
  • Day 69: Cluster Analysis & Segmentation
  • Day 70: Statistical Analysis with Python & R

Week 11: Industry-Specific Analytics

  • Day 71: Marketing Analytics – Customer Segmentation, Campaign Analysis
  • Day 72: Financial Analytics – Financial Statement Analysis, Risk Assessment
  • Day 73: HR Analytics – Employee Performance, Attrition Prediction
  • Day 74: Supply Chain Analytics – Inventory Optimization, Demand Forecasting